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Exactly solvable scale-free network model
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We study a deterministic scale-free network recently proposed by Barabasi, Ravasz, and Vicsek. We find that
there are two types of nodes: the hub and rim nodes, which form a bipartite structure of the network. We first
derive the exact numbei(k) of nodes with degre& for the hub and rim nodes in each generation of the
network, respectively. Using this, we obtain the exact exponents of the distribution fuR¢kipaf nodes with
k degree in the asymptotic limit &f— . We show that the degree distribution for the hub nodes exhibits the
scale-free natureR(k) <k ¥ with y=In 3/In 2=1.584 962, while the degree distribution for the rim nodes is
given by P(k) e 'k with ' =In(3/2)=0.405 465. Second, we analytically calculate the second-order average

degree of nodes]. Third, we numerically as well as analytically calculate the spectra of the adjacency matrix

A for representing topology of the network. We also analytically obtain the exact number of degeneracies at
each eigenvalue in the network. The density of stétes the distribution function of eigenvalyesxhibits the

fractal nature with respect to the degeneracy. Fourth, we study the mathematical structure of the determinant of
the eigenequation for the adjacency matrix. Fifth, we study hidden symmetry, zero modes, and its index
theorem in the deterministic scale-free network. Finally, we study the nature of the maximum eigenvalue in the
spectrum of the deterministic scale-free network. We will prove several theorems for it, using some math-
ematical theorems. Thus, we show that most of all important quantities in the network theory can be analyti-
cally obtained in the deterministic scale-free network model of Barabési, Ravasz, and Vicsek. Therefore, we
may call this network model the exactly solvable scale-free network.
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. INTRODUCTION ment probabilitylT; (k) =k;/ = ;, wherek; is the number of
Jinks at theith node. The development of this model is de-
scribed by a continuum modalk /dr=mll;(k;))=mk/27.
Then at timer the system consists ®(7) nodes and_(7)

links with L(T):%Ei’\‘:({)ki. As studied by Barabasi and co-
workers| 2] this model exhibits an exact exponentyof 3 for

[he power law. Thus, it has been concluded that the essential
points of why a network grows to a SFN are attributed to the

work geometry of the interndtl-3,21-24. The Faloutsos .
, ) growth of the system and the preferential attachment of new
brotherg{ 1] and Albert, Jeong, and Barab#2i3,21-24 first odes to old nodes existing already in the network.

; n
showed the scale-free nature of the internet geometry and" r, ) yhe apove context, the time evolution to construct a

opened up an area for studying very complex and growingsFN has been intensively studied in the AB model as well as

network systems such as the internet, biological evolutu.)no,[her models. And many works have appeared regarding

odes and links as metaphysical objects such as agents and
rer'elations:hips in an area of scienf2|. However, most ap-
proaches were based on a numerical approach. And the spec-
tra of the adjacency matri& for the SFN have been studied
‘numerically[1,2,25-27. Therefore, apart from the purposes

g;t;lultalgr}itﬂén(:t(lli)no.c Ssrarﬁ?emﬂb_e; CI)L g(r)g;rst(\)lv 'Stﬁosvr?ﬁé for the numerical analysis, the continuous-time SFN models
yP ' L : such as the AB model are not good enough at the micro-

power-law distributipn of the SFN, Albert and Barabasi fir§t scopic level to see what is going on in the network geometry.
proposed a very simple model called the Albert-Barabasi ' |stead of such a continuous-time SEN model, there has

(AB)h_SFN model([2,3,21-24. he followi ~__been proposed a new type of the SFN models, sometimes
This system is constructed by the following process: Ini-. 104 deterministic model28] and hierarchical SFN mod-

tially we putm, nodes as seeds for the system. Every time g,5159] (we would like to call it the DSFN in this paperin
new node is addean new links are connected from the node the former, the study showed a power-law behavior of the

to the existing nodes in the system with a preferential attaChﬁetwork analytically, while in the latter, the study showed it

numerically. However, we do not know much about the prop-
erties of these models yet.
*Electronic address: kazumoto@stannet.ne.jp On the other hand, there is a very important problem on
"Electronic address: hyamada@uranus.dti.ne.jp the maximum eigenvaluk,,,, Of the adjacency matriA. As

There has been notable progress in the study of the s
called scale-free networlSFN) [1-10] in recent years. In the
network theory, the random network model was first in-
vented by Erdds and Rénji1]. Recently it was generalized
to small-world network modelgl2—-20. Furthermore, about
five years ago, the SFN was discovered by studying the ne

ship, and economy. These are nicely summarized in the
views of Barabasj2].

As was studied in the literatufg], the nature of these
SFN's is characterized by a power-law behavior of the dis
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was numerically studief@25-27, the maximum eigenvalue I
for the AB model is bounded bw@ such that X,y -
=< constx \% where ki, means the maximum_order of '
nodes. And numerical studies showed that,eVN. And I
therefore, the numerical studies validated,,=const *
X N¥4, On this problem, very recently, Chung, Lu, and Vu
[31] have proved a very general theorem: In a complex net- '

work model,\ .« IS always bounded by the lower and upper i

bounds such tha=< \,,=Db. Define the second-order aver- v {'\ n=2

age degree of nodea, (see Sec. Y. Then,(C1) if the ex- = 3
ponenty>2.5, then const d < A= constx \@c (C2 If (
4

n=0

—_—

the exponenty<2.5, then const VK= Amax= constx d. !
(C3) And if the exponenty=2.5, then a transition happens. *
From this theorem, the AB model belongs to the first cat-
egory sincey=3. However, in spite of the seemingly impor-
tant theorem, because of the lack of other good example:
other than the AB model, examples of the other categories
have not yet been so well known so far.
So the purpose of this paper is to study in much detail the
DSFN model proposed by Barabasi, Ravasz, and Vig28k
in order to give a good example of the other category of the
theorem. This study will provide a rigorous treatment of the
complex network model. 1
The organization of the paper is the following. In Sec. I, |
we will introduce the DSFN model that was first studied by [ \i
Barabési, Ravasz, and VicsdR8]. In Sec. lll, we will 4 |
present the exact numbers of nodes and degrees in the ne
work and calculate the exact scaling behavior of the nodes.
In Sec. IV, we will calculate the exact number of the second- FIG. 1. (Color online The deterministic scale-free network. The

order average degreﬁe using the exact number distributions black and white nodes sho_w the hub and rim nodes. We call the
of the nodes and degrees. In Sec. V, we will introduce oufmost cor_mecte_d hl_Jb and rim the root and leaf, respectively. This
formalism of the paper such as the so-called adjacency m&€Wwork is a bipartite structure.

trix in the network theory and the eigenvalue problem of the

system. In Sec. VI, we will present the numerical results of In this model the total number of nodds(n), the total

the spectra of the adjacency matrices for the DSFN'’s up teumber of links,L(n), and the maximum number of links,
then=7 generation. And we will derive the exact numbers ofk,,(n), are given by

degeneracies in the spectrum. In Sec. VII, we will present an

5

analytical method that deduces the exact numbers of degen- N(m=3"=0,1,2,3,4,..., 1)
eracies in terms of irreducible polynomials for the DSFN.
We will also present some conjectures on the polynomials L(n)=2(3"-2"=0,2,10,38,130, ..., (2
and discuss the role of the roots of the irreducible polynomi-
als. In Sec. VIII, we show that there is a hidden symmetry in Kna(N) =2(2"-1)=0,2,6,14,30, ..., (©)

the adjacency matrix of the DSFN. And we will discuss the .

zero modes and its index theorem in the DSFN. In Sec. lx,respectlvely. . . :

we will discuss the nature of the maximum eigenvalue in the Let us consider the average Imk numigee., the average
spectrum of the DSFN. We will prove several theorems usingoIegree (k) of a network. It is defined by

some mathematical theorems such as the Perron-Frobenius N(n)
theorem. And we will discuss the relationship between the &)y =——> k. (4)
result of our theory and that of the theorem of Chung, Lu, N(n) iz

and Vu[31]. In Sec. X, conclusions will be made. The meaning of this is just the number of links per néide,

the average degreeWe may call it the first-order average

Il. DETERMINISTIC SCALE-FREE NETWORK degree. On the other hand, if we use the numBgsg of

_ _ _nodes withk degree, then we can write the average as
Let us introduce the DSFN model invented by Barabasi,

Ravasz, and VicselR8]. The development of this network is kmau{)

shown in Fig. 1. The black and white nodes show the hub {ky(n) :W > kP(K). (5)
and rim nodes. We call the most connected hub and rim the k=t

root and leaf, respectively. Therefore, we find that the conversion is carried out by
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N(n) TABLE I. The numberP(k) of nodes with degrek for the root
P(k) = E 5kki_ (6) nodes and leaf nodes.
i=1
Now, we are able to calculat&) for our DSFN. Substituting Root nodes Leaf nodes
Egs.(1) and(2) into Eq. (4), we obtain k P(k) k P(k)
» 2 2Xx 32 1 2Xx 32
2L(n 2\
<k>(n)=ﬁ=4{l—<§) :| — 4. (7) 6 2x 313 2 2% 33
14 2% 34 3 2Bx3m4
In this way, even though the network becomes very com- : : : :
plex asn—«, the average approaches a finite constant 4. oi+1_5» 2% g1 i 2i 5 g1
This is due to the following fact: In this DSFN as the itera- : : : :
tion is repea;ed, 'gh_e order_of_the most conne_cted hub be- on1_o 2% 3 n-2 253
comes large indefinitely while its number remains very few -
2"-2 2 n-1 2 1x1

[i.e.,~0(1)]. On the other hand, the numbers of the very few
connected nodes become large indefinitely. Hence the sum of 2mi-2 1 n 2"
the magnitude of ordgk) times the numberP(k)] of nodes
with the orderk may remain finite.

=In 3/In 2=1.584 962. This shows a scale-free nat(ie,

the fractal natureof the hub nodes in the network as we
. EXACT NUMBERS OF NODES AND DEGREES expect[30].

Let us find the exact numbers of nodes and degrees. This On the other hand, it is not true for the leaves in the
would be very crucial for our later purposes in order toNetwork. In this case, regardirigfk) as 2x 3" andk asi,
evaluate many quantities in the network theory. we find P(k) = (5)*=e77'k, where y’ =In(3)=0.405 465. This

As was discussed by Barabasi, Ravasz, and Vifg88k  shows that the scaling nature of the leaf nodes is not scale
in the DSFN there are two categories of nodes called théee but exponential.

“hub” nodes and “rim” nodes. As they called the most con- In this way, the scaling nature of the roots and that of the
nected hub node the “rootshown as black dots in Fig),1 leaves in the DSFN are different from each other. Thus, we
we would like to call the most connected rim node the “leaf’are led to a certain model which consists ofmaltifractal
(shown as white dots in Fig.)1From seeing Fig. 1, the nature of the complex networks.

locations of the root node and the leaf nodes look very simi-

lar to those of a hub and rims in an umbrella. While there IV. SECOND-ORDER AVERAGE DEGREE

exists only one roof node in each generation of the network, ~
the number of leaves can increase very rapidly. Let us calculate the second-order average ded(ee It

Let us first consider the hub nodes. In thk step, the IS defined by

degree of the root is'?- 2. In the next iteration two copies N(n) 1 Kmao(N)
of this hub will appear in the two newly added units. As we dn=——>K=— > KP®K. (8)
iterate further, in theith step 37 copies of this hub will be L(n) o L(n) =

present in the network. However, the two newly created cop-_, . . .
ies will not increase their degree after further iterations This quantity was recently introduced by Chung, Lu, and Vu

Therefore, aften iterations there are 2 3"~! nodes with [31]. Roughly speakin_g, the meaning of th_is_quality is the
average degree per link. In other words, it is the average

ol
degLreeteu2S“ ne‘2>£t consider the rim nodes. In tha step, the degree weighted with the preferential attachment such that
degree of the most connected rim, the leafj.i&And the ~ N()

number of such nodes id.2n the next iteration one copy of din) = >, kILi(k). (9)

the leaves will be kept the same and two copies of the leaves i=1

will appear in the two newly added. As we iterate further, in

the nth step 3~ copies of the leaves will be present in the

network. Therefore, aften iterations there are'X 31 ~ (k?)(n)

nodes with degree d(n) = W)’ (10
Now, denote by the degree of nodes and denoteRi{k)

the total number of nodes with degrée Hence we get Wwhere(k?)(n) is defined by

We derive

Tat;\le . A b Barabasi. R 4 Vides 1 N(n) Kma{1)
s was shown by Barabdsi, Ravasz, and Vi , con- 2\ () — 2_ 2
sideration of the root nodes is enough to derive the scaling = N(n) z s N(n) 2:1 kP, (43

exponent of the distribution functioR(k) for the root nodes
in the network. Picking up the 23"17 nodes with degree the second moment per node. As was shown before, the av-

2*1-2 we can regar®(k) as 2x3" 17 andk as 2*1-2.  erage degregk(n) converges to 4 a;—x=. Hence, the
Then eliminatingi, we can deriveP(k)«k™”, where y  second-order average degfél&l) becomes proportional to
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the second momenk?)(n) in the limit such that network. Using the numbering given in Fig. 1, the adjacency
5 matrix is defined by
U= (k(n) 12
== (12) 011
A=|1 0 , (16)

Before going to calculate the second-order average de-
gree, let us first check whether or not the distributions given
in the tables reproduce the correct results for the total num-
bers of nodes and links. This problem is a trivial one. How-
ever, as we will see, this is very instructive for our purpose
here in order to see what is going on in the problem.

Let us show that the distributions of the nodes
and degrees are exact. We can sum them up as fol-
lows: Ekeallp(k) =Ekel’00tp(k) +Ekeleafp(k) =3 1+2x3m! A=
=3"=N(n). This proves Eq(1).

Let us next consider the total number of links in the net-
work. We calculate it for the root and leaf nodes, separately,
as 2y r0okP(K)=2(3"-2"), 2y 1eakP(k)=2(3"-2"). In this
way, explicitly using the exact numbers of nodes and de-

grees, we can show that each sum produces the total number

of links in the network as we have expected. Hence, thi@nd so forth. Here all other blanks stand for zeros. We omit

proves Eq(2). them just for seeing the sparse matrix structure correspond-
This situation encourages us to perform the calculation ofnd to the network geometry of the DSFN. What is important

the second-order average degree of B). Let us do this here in the above is that the adjacency matrix for a certain

next. In Eq.(8), we need to separate it into two parts of the generation of the network can be almost three-block diagonal
sum as follows: by those for the last generation of the network. From this, the

fractal nature of the adjacency matrices for the DSFN is now
very clear.

-
o
o

o O -
o O -

100 , (17)

011
100
100

R OFP P OFr L O
o
H
H

[

~ 1
dn) = — k2P(k K2P(K) ).
() L(”)(kgot P+ ke%af 3 )> 13

i B. Eigenequations
As a result, we can easily calculate the second-order av-

erage degree as follows: Let us next consider the eigenvalue problem for the adja-
cency matrix in the DSFN. The eigenequation for thth
i = 1 [3(%)”_( .\ })(2)”_ §} generation of the network is given by
2\"L \3 2/\3 2 - - .-
1—<§) AXn=NXn, X Xp=1, (19
n—= [ a\n where A,, is the 3x 3" matrix andx, the 3-dimensional
— 3(—) — ®© (14 vector with its transposé’,. This reduces to the following
eigenvalue problem:
In this way, the second-order average degid®s been defnl,—A,]=0, (19)
calculated explicitly, and we have shown that it diverges as _ )
an exponential law. wherel,, stands for the 8< 3" unit matrix. Denote byD,(\)
the determinant on the left-hand side. This can be formally
V. FORMALISM expanded with respect o as
A. Adjacency matrix D,(\) = \3" - al)\3n"1+ az)\3n"2+ (- 1)3”—1a3n_1)\
Let us consider the adjacency matixin the theory of n
networks[1,2,28,29,31 This matrix is very important for +(=1)7 agn. (20)

the theory of networks, since it represents the topology of the
network structure. Denote tgy; a component corresponding

to a link between thé&h node and thgth node. In the theory are able to derive the equatidd(A)=0. As we will see

of networks, the elements have only 0 or 1 according tqater, all the terms of even number powers\ofanish in the

Whether or not there IS a link. Therefore, in general, theDSFN. This is attributed to the topology of the network.
adjacency matrix is defined by

We note the following: Since the is an eigenvalue of the
adjacency matriXy,, from knowledge of linear algebra, we

a = 1 if there is a link, (15) VI. NUMERICAL CALCULATION OF THE
' 10 otherwise. SPECTRA

Let us consider the adjacency matrix for the DSFN. De- Let us obtain the spectra of the adjacency matrices, dis-
note byA, the adjacency matrix for theth generation of the cussed in the previous section. We use a computer calcula-
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FIG. 2. (Color online The spectrum of adjacency matrix for the
deterministic scale-free network. The spectrum of adjacency matrix20—  N=2187 -
for the network of thenth generation is shown far=1 (triangles,
n=2 (circles, n=3 (squares andn=4 (diamond$, respectively. 1.5 B

tion for this purpose. The calculated spectra for the adja-'°7

cency matrix for each generation of the network are shown in05

Fig. 2. ~ B
From the numerical results, we find the following very .JJ/\MLLA

important characters of the spect(g: The maximum eigen- ~ I I

value )\(l”) at thenth generation of the network becomes the e Eigenﬁamﬂ 0

second largest eigenvalmé”l) at the(n+1)th generation of

the network. FIG. 3. (Color online The spectrum of adjacency matrix for the

(ii) Similarly for the other eigenvalues, all the eigenvaluesdeterministic scale-free network. The spectrum of adjacency matrix
appearing at the previous generations of network always exor the network of thenth generation is shown far=5, n=6, and
ist in the eigenvalues appearing at the new generation of th= 7, respectively.
network.

(i) The spectrum consists of highly degenerate levelsrespectively. From this we have confirmed ourselves that this
For example, fom=1 there are three levelshown by tri-  nature is numerically exact at any generation of the network
angles of A=0, +\2 with single degeneracy. For=2 there  up ton=8. We show this in Fig. 3 for the cases of=243
are nine levelgshown by circlesin the spectrum. There is (n=5), 6°=729(n=6), and 3=2187(n=7).
only one peak at the center level 0¥ 0 with degeneracy of The above nature is remarkable. It enables us to calculate
3 and the other levels of= +(y3-1), 12, #(\3+1) are all  the exact sequence of degeneracies in the spectrum at any
single levels. Fon=3 there are 27 levelshown by squargs generation of the network, apart from finding the exact ei-
in the spectrum. There is a highest peak at the center levglenvalues. By counting the numbers of the levels and its
(A=0) with degeneracy of 9. There are two peaks at thedegeneracies, we find the following very important result.
levels of \=+2 with degeneracy of 3. And the other 12  (iv) Let us denote; the degeneracy of thigh peak in the
levels are all single levels. Fan=4 there are 81 levels spectrum for the network of theth generation. Denote b,
(shown by diamondsin the spectrum. There is a highest the number of the eigenvalues having the same degeneracy
peak at the center levék =0) with degeneracy of 27. There of u;. We find
are two peaks at the levels b +12 with degeneracy of 9.

There are four peaks at the levels of £v2 with degen-

eracy of 3. And the other 24 levels are all single levels and so w=3 forj=01,...n-1, 2D
forth.

In order to study this nature further, we have done nu- -1 .
merical calculations for the spectra of the adjacency matrices Q= 2 forj=1,2,...n-1, (22)
with the sizes of 3=243, $=729, 3=2187, and 8=6561, 3% 2"t forj=0.
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From this we can check whether or not the above formula f,(y) =y® - 64y + 1104/° — 742/° + 22113/ - 29696/
is correct. For this purpose, we just reproduce the total num- 5
ber of eigenvalues of the adjacency matrix as follows: +17664/" - 4096/ + 256, (24)

and so forth, wherg/=\2. In general, this nature can be

n-1 summarized as the following conjectures.
> Q= moQo+ maQu+ - + ppaQra =37 (29 Conjecture 1:For the polynomial with even suffix of
j=0 =2m, it is always factorized as
This is nothing but the total number of eigenvalues in the fam() = gm(M) (V) (29
spectrum. Hence, the formula is proved. whereg(\) andh,(\) are (2™th-order polynomials of.

Now we would like to point out the particular nature of
the eigenvector§.e., the statescorresponding to the eigen-
yalues:(v) The eigenvef:tors (i.e., _the .states) are very local-p,(\) = )\3”'1{f1()\)}3”‘2“2()\)}3”‘3...{fn_z()\)}3fn_10\)fn()\)_
ized The states ok =0 first appearing in the network of the
, ) . ; (26)
first generation are localized only on the pairs of leaf nodes
such as the pair of 2 and 3, the pair of 5 and 6, the pair of 8 The meaning of the second conjecture is now very clear.
and 9, etc. The states af=+2 first appearing in the net- (1) The spectrum is symmetrical around the center level of
work of the first generation are localized only on the smallesh =0 (see Figs. 2 and)3This means that if\ is an eigen-
triples centered at the root hub such as the triple of 1, 2, andalue of the adjacency matrix, then so if foh—(2) The
3, the triple of 4, 5, and 6, the triple of 7, 8, and 9, etc. Thenumbers of power exponents in EQ6) represent those of
states ofA=+(y3+£1) first appearing in the network of the the degeneracies of the eigenvalues. For example) tH
second generation are localized within the subnetworkéevel consists of 3 (i.e., the degeneracy of"3) and this
having the size of that of the second generation, sucleorresponds to the highest peak at the centex=0d in the
as the network of 1-9, etc. The states of spectrum. Thé\= +2 levels consist of 32 (i.e., the degen-
=+/2(3+/3+\11+6/3) first appearing in the network of eracy of 372 and these correspond to the second highest
the third generation are localized within the subnetworksP€aks at the center of=++2 in the spectrum and so forth.
having the size of that of the second generation, such as thehis proves the formulas of Eq&21) and (22), previously
network of 1-27, etc., and so forth. And the number of suctfound.
subnetworks gives its degeneracy. The validity of the conjectures is also supported by our

Thus, we find that the larger the eigenvalue, the larger th@umerical calculations as mentioned before. But the exact
extent of the eigenvector. Hence, we would like to concludegdroofs have not been made yet, however.
that the eigenvector with the maximum eigenvalisay,

Amay 1S most delocalized while the eigenvaluesxaf0 are B. Roots of the irreducible polynomials

extremely localized at the leaf nodes in the network. This
nature explains the meaning of the spectrum shown in Figs. 2
and 3. Therefore, since we see similar spectra in most SFN
models, we may expect that the same holds true for ever

SFN. This is a very interesting point in the study of SFN'’s.

Conjecture 2:

We now consider zerosi.e., roots of the irreducible
olynomials off ,(\) for k=1,2, ... n. As studied before, the
rder of f,(\) is 2" and it is a function of\2 Let us denote
=\2. Then,f,(\) becomes a function of such asf(y).

Sincef,(y) is now a(2"th-order polynomial o, it has to

consist of 2 zeros. Then the meaning of irreducibility is the
VIl. NATURE OF THE EIGENVALUE PROBLEM following: f,(y) (k=1,2,...n) does not share common
roots with the other generations of the polynomials. This can
be proved by the Sturm theorem for polynomig3g].

We are going to treat analytically the above result in the From the knowledge of algebra, if there is a series of
previous section. To do this, let us consider some interestingreducible polynomials, then roots of the polynomial of or-
natures thaD,(\) can be factored in terms of the polynomi- dern-1 always exist in the intervals between the roots of the
als of f,(\), where f,(\) is an even function of the polynomial of ordem. Therefore, the maximum root of the
(2Mth-order polynomial of\ such thatf,(\)=f,(-\); this  polynomial of ordern exceeds that of ordem—1. In our
symmetry in the eigenvalues is due to the bipartite nature oproblem, the irreducible polynomid(:) is of order 2 and
the DSFN. For example, the polynomials are given explicitlyit gives the newly appearing eigenvalues. Therefore, there
such as are 2' eigenvalues in the network of theh generation.

On the other hand, the previously appearing eigenvalues
are given as the roots of the irreducible polynomials of order
up to n—-1—i.e., f;(N),fo(\), ... ,fr.1(N). Therefore, there
are 1+2+--+2"1=2"-1 eigenvalues already in the spec-

fo(y) =y?— 8y + 4, trum. Thus, the number of newly appearing eigenvalues is
exactly one more than that of the previously existing eigen-
values. Hence, by the knowledge of algebra, the eigenvalues
fa(y) =y*— 24y° + 104° - 96y + 16, of the network of thenth generation sandwich the previously

A. Simple observations forD,,(\)

fily)=y-2,
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existing eigenvalues such that the maximum eigenvalue may 011011011 X1 X1
exceed that of the previous generation. As we iterate the 100 x %
network,n becomes large indefinitely. Therefore, the maxi- 2 2
mum eigenvalue develops further. 100 X3 X3

To understand the above nature further, we have numeri- 0 011 X4 X4
cally investigated the growth of the maximum eigenvalue 1 100 xs | =n] %
Amax{N) at thenth generation up tm=8. Define the ratio by
R(N) =\ madN)/Aman—=1). The result is as followsR(1) 1 100 X Xe
=1.932..., R(2)=1.583..., R(3)=1.486..., R(4)=1.447.. ., 0 011 X7 X7
R(5)=1.430...,... . From this we see that asbecomes large 1 100 Xg Xg
The ratio tends to the nlumbe|2=1.4142... . Thus, we are 1 10 0 Xo Xo
ed to the following conjecture.

Conjecture 3:As n— oo, (29)

This expression depends on the choice of the arrangement of
Ny — 272, 27) components of the eigenvecto)zzz(xl,x2,x3,x4,x5,x6,

X7,Xg,Xg)!, Wheret means its transpose. Reminding ourselves
of the bipartite nature of the DSFN, we can rearrange them
This conjecture can be proved from the nature of the serieas follows: Y,=(Xy,X4,X7,X2,X5,Xg,X3,Xg,Xg)'. This means

of the irreducible polynomials of Eq24). Let us first con- that we align the vector-component numbering using mod3.
sider the case ai=even. As we have discussed conjecture 1,Therefore, we can write it as

if n=even, then the polynomial can be factorizedyéns_l q 0 Mi\ /g G
n-1 n-1 n-1 n-1 ~
—ay(y? M ap()y? 2 =N g (T ] 2(*) :< iy O, )(*) :X(*)’ (30
n=1)_q 1% M2 OGXG 1% v

[N+ By (A" 14+ ]=0, where,(n) =2"2. Therefore,
the maximum eigenvalue is given b\Fn_l—Bl(n))\z(n_l)_l whereud and v are the three- and six-dimensional vectors,

—---=0. Dividing the above polynomial byz(n_l)‘l yields O3x3 and @ are zero matrices, and

N=B1(N)+O(1/\)+- . SiNCeApa— ® asn— o, we can ob- 100
tain the approximation of the maximum eigenvalue by a per-

turbation method. Hence, fon=even, we obtain\,,,(n) 110
=224 02 V/2) +..., such that\ng,(n) >2"2 Similarly, if vzl T 01 31
n=odd, then we can apply the same perturbational argument 2 100
to the irreducible polynomial; then, we have=a;(n) 110
-0O(1/y)+- -+, wherea,(n)=3x 2" andy=\2. Hence, we ob- 10 1

tain
Here, A,=PA,P1 and ?zz(ﬁ,v”)t: P;(Z, respectively. This is
just an interchange of the vector components. Therefore, if
AmadN) = \J’E X 2“/2—0(%) + o (29 there~is no confusion betwee?vz and A,, we can simply
write A, asA,. So we identify them as the original adjacency

matrix A,.

such thatxma)(n)<\f§x 2V2 This argument supports the From Eq.(30), we find, by simple algebra,

conjecture. Thus, we expect that ms- = )\ma)g(n)—>_2“’2. _ MIM,G=\20, M,Mlo =22, (32
In this way, the solution of the series of the irreducible . _ _ _ .
polynomials is very crucial in finding the spectrum of the WhereM;Mj is the three-dimensional matrix amd,M; the

DSFN. This point has been supported by our numerical calSix-dimensional matrix. .
culations before. Now, we are able to generalize the above procedure to the

adjacency matri,, for the DSFN at any generation. In this
case Eq(30) is generalized to

VIIl. HIDDEN SYMMETRY, ZERO MODES, (J) _ (Ouu Nﬂ)(ﬁ) ~ (*
N =

u
AND INDEX THEOREM n =\ _,) . (33
M, 0, v

-

v v

A. Hidden symmetry in the model
Y Y This then yields

Let us consider a particular nature of the DSFN. There is T\ o\
a hidden symmetry in the adjacency matfix To see this Mno =AU, M=o (34)
point let us consider the case £2. As was discussed be- Herel andv are theu- andv-dimensional vectors, Q and
fore, the adjacency matrix in this case is given by Ed) 0,, the uXu andv Xv zero matrices, and/lﬁ and M,, the
and the eigenvalue problem is uXxv andv X u matrices, respectively, where=3""1 andv
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=3"-3"1 Therefore, in the same way we have the follow-
ing:

Dn(M) =|defMiM, = N1,]|*2|defM M7 - A1, ]2

=[Dan-1(y)Dgn_gra(y) V2, (35)

where Dan-1(y) and Dan_gr1(y) [=y3" Daraly)] are factor-
ized in terms of the irreducible polynomidig(\). Therefore,
Eq. (35) can be reduced to the form of E6). Thus, this

PHYSICAL REVIEW E 71, 036144(2005

IX. NATURE OF THE MAXIMUM EIGENVALUE

Let us consider the nature of the maximum eigenvalue. As
we studied before, the matrid'M, absolutely determines
the spectrum ok >0, while the matrixvi,M determines the
zero modes of\=0 as well as the spectrum. Therefore, in
order to determine the spectrum we need study the matrix
MIM,..

Let us see a few example of these matrices. The matrix
for n=2 is obtained from Eq(31). The matrix forn=3 is

approach can provide us a hint to prove conjecture 2. Howgiven as
ever, a rigorous proof is out of scope of this paper since it is

numerically supported as in Sec. VI.

We would like to mention that similar approaches have

been applied to amorphous systef88,34), the topological
localization problen{35], fermion number fractionalization
[36], and the Hubbard mod¢B7].

B. Zero modes and index theorem in the deterministic
scale-free network

Let us considezero modesi.e., the eigenvectors having

A=0) in the spectrum. The zero modes are given by substi-

tuting =0 into Eqg.(34) such that

M/z=0, M.G=0. (36)
The number of zero modes given y,0=0 (or, equiva-
lently, the number of zero modes given by the maMﬁd\/I,Q

is the dimension of the null space bf,,. This is sometimes
called the dimension of the kernel ™, which is simply
written as diniker M,]. And the number of zero modes given

by Ml17=0 (or, equivalently, the number of zero modes given

by the matrianMD is the dimension of the null space of

M. This is sometimes called the dimension of the kernel o

M, simply written as dirfkerM]=dim[cokerM,] [38].
Therefore, in the above example of2, dinfkerM,]=3
and dinfkerM}]=0. This would give a relation Int,)
=the number of zero modes:cﬁherMZ]—dim[kenvI;]:&

This quantity IndM,,) is called theindex of M,. And the

14 2 2 42 2 4 2
2 20000000
2 02000000
4 00622000
MIM;=] 2 00220000 (38)
2 00202000
4 000006 22
2 00000220
2 0000020

Here, we find that the diagonal elements of the maMéMg,
are just the maximum degrees of nodes., the numbers of
the most connected linksn the networks up to the third
generation. The maximum diagonal element is the maximum
degree of nodes, which is the degree of the root. Hence, it is
14 for n=3 (it is 6 for n=2).
We find that this is always true for the network of thi
generation. We find that the diagonal elements of the matrix
gMn are just the maximum degrees of nodes for the net-
orks up to thenth generation. Hence the maximum diago-
nal element is the maximum degrees of node, which is the
degree of the root. It i&,,=2(2"-1) from Eq. (3).
Let us first derive the lower bound of the maximum ei-
genvalue) ., In mathematics, we have the following theo-
rem[39].

relation where the number of zero modes coincides with the Theorem 1:Denote byH a non-negative definite matrix.

difference between difkerM,] and din[keer] is called
the index theoreni38].
This can be generalized to the adjacency maiyor the

Denote byv a positive definite symmetric matrix. Define a
matrix A by A=H+V. Suppose that the eigenequations
Hlyi)=hili) andAlgy=a|¢) (i=1,2,...)) are known such

DSFN in thenth generation. We now have the index theoremthat the eigenvalues satisfiy;=h,=---=h, and a;=a,

for the DSFN:

Ind(M,,) = dim[kerM,] - dim[kerM/]=3"1. (37

As we have discussed before, this number is just the number

of N\=0 states, localized at the smallest leaf nodes.

The proof of Eq.(37) is quite simple. For the DSFN, the
dimension of the matriM'M,, is 3"%, which is the number
of hub nodes. And the dimension of the matkixM is 3"

=-.-=a;. And assume thaty;|V|#)=0. Then, the follow-
ing holds true:

h,<a, fors=1,2,...]. (39

We omit the proof here, since it is given in the literat[86)].
Let us apply this theorem to the matrMﬁMn. We now
denote the matri>M§Mn by A in the theorem. Denote b

-3"1 which is the number of rim nodes. Then, we alwaysthe matrix having the diagonal matrix componentsvgiM,,

find that there are no zero modes M{M, in our DSFN.
That is, dinfkerM!]=0. Therefore, the null space .M

and denote by the matrix having the off-diagonal matrix
components oM!M,,. Therefore MM, satisfies the condi-

is given by the difference between the dimension of the mations forA in the theorem. The eigenvalue of the mathixs

trix MM! and that of the matrbM!M,. This is 3-3"1
-3"m1=3"1 Hence, dirfker M,]=3"".

now azxf andl=3""1. Therefore, we can prove the follow-
ing theorem for the DSFN.
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o |?||||! 1 L1111 1 1 T | B kl'kl |zl-l23n_2

K, - Kan_p

_ ] R |
5 Aipgy () M/@ e : —_— ;
-5 d(n) S o
el \/kmax(n) / /A 1-Kgnp Ky-Kgnp o+ Kgnop kg
(42)
//.z// which is a 371 x 3" symmetric matrix. Therefore, the trace

3

N

] ,Z/ of this matrix is the total number of links such that
10 tr(MEMn):Eierootki'kiZEierootki:Ekerootkp(k):L(n)-

L Let us now apply the Perron-Frobenius theorem to our
/Z// - problem. The Perron-Frobenius theorem in linear algebra
1 ﬁ

L [31,39 is described as follows.

5_g/ R Theorem 4Suppose that anXx n symmetric matrixA has
© all non-negative entriesa;;=0. Then this satisfies an
M eigenequation Al¢;)=a|¢;). For any positive constants
. i €1,Cy, ... ,Cy the maximum eigenvalua,,,(A) satisfies
3 46567 2 3 4567 2 3 456 " cay
100 \ 1000 A A) < max E_J_J. ) (43)
(n) I=i=n| j=1 G

FIG. 4. (Color online The growth of the maximum eigenvalue \We omit the proof here since this is very well knoja1,39.
Amax and its lower and upper bounds in the DSFN. Harg,, RegardingA as M:F]Mn such thala”=|2i-lzj andai=)\i2 and
(circles, the lower (triangles, and upper(squares bounds are applying to the Perron-Frobenius theorem, we can prove the
shown for the DSFN's of thenth generations up ton=8,  following theorem for the DSFN.

respectively. Theorem 5:

MMMy = 2 kg -k =b. (44)
Theorem 2: Jeroot
SinceX; ¢ ook 'K < Zj c rootk; -K; =L (1) together with Eq(2),

we end up with the following theorem for the DSFN.
hy<\Z fors=1,2,...,3°% (40) Theorem 6:

AmaMIM,) < VL(n) = y2(3"- 2"). (45)

Since the maximum eigenvalue bf is now k., We have  From theorems 3 and 5, we finally derive the following theo-
h;=Knax Thus, we finally end up with the following theorem rem for the DSFN.

for the DSFN. Theorem 7:The maximum eigenvalue of the adjacency
Theorem 3: matrix of the DSFN is bounded as
as\px<=bs<=c, (46)
VK= V2™ = 2 < N e (41)  wherea=2(2"-1), c=2(3"-2"), andb=3; _ 1poiks K;. Al-

) . ) ) _ though there is no name on the quantitythis is a much

We have also investigated this theorem numerically inpetter bound thar, the square root of the total number of
Fig. 4. It shows that the theorem is valid for the DSFN's of jinks. We note that the above theorem is consistent with con-
the generations up t0=8. Thus, this supports the theorem. jecture 3 that asserts, ,— 2"2 asn— o,

Let us next derive the upper bound of the maximum ei- e finally make a comment on the theorem of Chung, Lu,
genvaluehy,, To do so, let us first consider a particular and Vu[31]. As introduced in Introduction, since the DSFN
property of the matrisM,.. As is seen from the matrix such as has the exponent of=In 3/In 2< 2.5, this system may be-
Eqg. (31, the ith column vector ofM, is a vector whose long to the(C2) case. Therefore, if we apply their theorem to
components are 0 or 1 such that the total number of 1 in theur system of the DSFN, then it leads us to the following:
column counts the ordd¢ of theith hub node. Denote this
vector byk.. Then we findk; -k;=k;, where by definitiork,
>k,=---=kgn, sincek; is the order of the rooti.e., the whereaoc(4/3)”:(1.33...)” from Eq. (14). On the other
most Eonnecteq habThen, the matrix can be represented @Shand, our theorem provides us the lower bouad2"2
Mn=(Ki,Kg, ... Kan_p), where the suffices run over all the =(1.414..)" and the upper bounck< 3"2=(1.732..)". From
hub (i.e., roo) nodes. Now, we can represeW{M, in gen-  this, we find that the theorem of Chung, Lu, and L]
eral in the following: holds true until abouh=12. However, beyond=12 the role

J— ~
VKimax =< Amax=< d, (47)
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FIG. 5. (Color onling The growth of the square root of the total
number of links,y/L(n), the maximum order of nodeskms, and

the maximum degre&(n). Clearly, we see that‘%is smaller than

a(n) but very close to it unden=12. Howeveryknay exceedsa(n)
aboutn=12.
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of A\naxiS not available above=8 because of the ability of
our computer power. So we cannot say anything about where
it is located aboven=8, so far. We may expect that it is still
sandwiched between them although the role is switched.

In this way, our rigorous approach provides a concrete
example for investigating the validity of the theorem of
Chung, Lu, and VUJ31]. This is an advantage of our theory.

X. CONCLUSIONS

In conclusion, we have intensively studied the DSFN that
was first studied by Barabasi, Ravasz, and Vids#. We
have first studied the geometry of the network and presented
the exact numbers of nodes and degrees. Second, we have
analytically calculated the exact number of the second-order

average degred [see EQ.(31)], using the numbers of the
nodes and degrees. Third, we have numerically calculated
the spectra of the adjacency matAx for the network up to

the (n=7)th generation. Fourth, we have discussed the nature
of the adjacency matrix for the network. Fifth, we have
shown that there is a hidden symmetry in the adjacency ma-
trix. Finally, we have investigated the maximum eigenvalue
Amax iN the DSFN. We have shown that,,, is bounded by
the lower and upper bounds that are given analyticage
theorem 7. Thus, we believe that our theory presented in this
paper gives the first rigorous example in the SFN theory,

betweend and Vkn is switched. So their theorem can be where most of all quantities in the network theory are ana-
violated aboven=12, although, strictly speaking, their theo- |ytically obtained. In this context, we would like to call the
rem should be applied to the case 0k <2.5. We show DSFN the exactly solvable SFN model.

this behavior using the above exact expressions in Fig. 5. As

shown in Fig. 4, the numerical value f,,, is sandwiched
between the upper bound dfand the lower bound ofk

Therefore, the theorem of Chung, Lu, and Vu follows within

our calculation up ta=8. Unfortunately, a numerical value
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