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We study a deterministic scale-free network recently proposed by Barabási, Ravasz, and Vicsek. We find that
there are two types of nodes: the hub and rim nodes, which form a bipartite structure of the network. We first
derive the exact numbersPskd of nodes with degreek for the hub and rim nodes in each generation of the
network, respectively. Using this, we obtain the exact exponents of the distribution functionPskd of nodes with
k degree in the asymptotic limit ofk→`. We show that the degree distribution for the hub nodes exhibits the
scale-free nature,Pskd~k−g with g=ln 3/ ln 2=1.584 962, while the degree distribution for the rim nodes is
given byPskd~e−g8k with g8=lns3/2d=0.405 465. Second, we analytically calculate the second-order average

degree of nodes,d̃. Third, we numerically as well as analytically calculate the spectra of the adjacency matrix
A for representing topology of the network. We also analytically obtain the exact number of degeneracies at
each eigenvalue in the network. The density of statessi.e., the distribution function of eigenvaluesd exhibits the
fractal nature with respect to the degeneracy. Fourth, we study the mathematical structure of the determinant of
the eigenequation for the adjacency matrix. Fifth, we study hidden symmetry, zero modes, and its index
theorem in the deterministic scale-free network. Finally, we study the nature of the maximum eigenvalue in the
spectrum of the deterministic scale-free network. We will prove several theorems for it, using some math-
ematical theorems. Thus, we show that most of all important quantities in the network theory can be analyti-
cally obtained in the deterministic scale-free network model of Barabási, Ravasz, and Vicsek. Therefore, we
may call this network model the exactly solvable scale-free network.
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I. INTRODUCTION

There has been notable progress in the study of the so-
called scale-free networksSFNd f1–10g in recent years. In the
network theory, the random network model was first in-
vented by Erdös and Rényif11g. Recently it was generalized
to small-world network modelsf12–20g. Furthermore, about
five years ago, the SFN was discovered by studying the net-
work geometry of the internetf1–3,21–24g. The Faloutsos
brothersf1g and Albert, Jeong, and Barabásif2,3,21–24g first
showed the scale-free nature of the internet geometry and
opened up an area for studying very complex and growing
network systems such as the internet, biological evolution,
metabolic reaction, epidemic disease, human sexual relation-
ship, and economy. These are nicely summarized in the re-
views of Barabásif2g.

As was studied in the literaturef2g, the nature of these
SFN’s is characterized by a power-law behavior of the dis-
tribution function. Here the number of nodes with orderk
can be fit byPskd~k−g, whereg<1–4. In order to show the
power-law distribution of the SFN, Albert and Barabási first
proposed a very simple model called the Albert-Barabási
sABd SFN modelf2,3,21–24g.

This system is constructed by the following process: Ini-
tially we putm0 nodes as seeds for the system. Every time a
new node is added,m new links are connected from the node
to the existing nodes in the system with a preferential attach-

ment probabilityPiskid=ki /oi=1
N−1ki, whereki is the number of

links at theith node. The development of this model is de-
scribed by a continuum modeldki /dt=mPiskid=mki /2t.
Then at timet the system consists ofNstd nodes andLstd
links with Lstd= 1

2oi=1
Nstdki. As studied by Barabási and co-

workersf2g this model exhibits an exact exponent ofg=3 for
the power law. Thus, it has been concluded that the essential
points of why a network grows to a SFN are attributed to the
growth of the system and the preferential attachment of new
nodes to old nodes existing already in the network.

From the above context, the time evolution to construct a
SFN has been intensively studied in the AB model as well as
other models. And many works have appeared regarding
nodes and links as metaphysical objects such as agents and
relationships in an area of sciencef2g. However, most ap-
proaches were based on a numerical approach. And the spec-
tra of the adjacency matrixA for the SFN have been studied
numericallyf1,2,25–27g. Therefore, apart from the purposes
for the numerical analysis, the continuous-time SFN models
such as the AB model are not good enough at the micro-
scopic level to see what is going on in the network geometry.

Instead of such a continuous-time SFN model, there has
been proposed a new type of the SFN models, sometimes
called deterministic modelsf28g and hierarchical SFN mod-
els f29g swe would like to call it the DSFN in this paperd. In
the former, the study showed a power-law behavior of the
network analytically, while in the latter, the study showed it
numerically. However, we do not know much about the prop-
erties of these models yet.

On the other hand, there is a very important problem on
the maximum eigenvaluelmax of the adjacency matrixA. As
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was numerically studiedf25–27g, the maximum eigenvalue
for the AB model is bounded byÎkmax such that lmax

øconst3Îkmax, where kmax means the maximum order of
nodes. And numerical studies showed thatkmax~ÎN. And
therefore, the numerical studies validatedlmaxøconst
3N1/4. On this problem, very recently, Chung, Lu, and Vu
f31g have proved a very general theorem: In a complex net-
work model,lmax is always bounded by the lower and upper
bounds such thataølmaxøb. Define the second-order aver-

age degree of nodes,d̃ ssee Sec. IVd. Then,sC1d if the ex-

ponentg.2.5, then const3 d̃ølmaxøconst3Îkmax. sC2d If

the exponentg,2.5, then const3Îkmaxølmaxøconst3 d̃.
sC3d And if the exponentg=2.5, then a transition happens.
From this theorem, the AB model belongs to the first cat-
egory sinceg=3. However, in spite of the seemingly impor-
tant theorem, because of the lack of other good examples
other than the AB model, examples of the other categories
have not yet been so well known so far.

So the purpose of this paper is to study in much detail the
DSFN model proposed by Barabási, Ravasz, and Vicsekf28g
in order to give a good example of the other category of the
theorem. This study will provide a rigorous treatment of the
complex network model.

The organization of the paper is the following. In Sec. II,
we will introduce the DSFN model that was first studied by
Barabási, Ravasz, and Vicsekf28g. In Sec. III, we will
present the exact numbers of nodes and degrees in the net-
work and calculate the exact scaling behavior of the nodes.
In Sec. IV, we will calculate the exact number of the second-

order average degreed̃, using the exact number distributions
of the nodes and degrees. In Sec. V, we will introduce our
formalism of the paper such as the so-called adjacency ma-
trix in the network theory and the eigenvalue problem of the
system. In Sec. VI, we will present the numerical results of
the spectra of the adjacency matrices for the DSFN’s up to
then=7 generation. And we will derive the exact numbers of
degeneracies in the spectrum. In Sec. VII, we will present an
analytical method that deduces the exact numbers of degen-
eracies in terms of irreducible polynomials for the DSFN.
We will also present some conjectures on the polynomials
and discuss the role of the roots of the irreducible polynomi-
als. In Sec. VIII, we show that there is a hidden symmetry in
the adjacency matrix of the DSFN. And we will discuss the
zero modes and its index theorem in the DSFN. In Sec. IX,
we will discuss the nature of the maximum eigenvalue in the
spectrum of the DSFN. We will prove several theorems using
some mathematical theorems such as the Perron-Frobenius
theorem. And we will discuss the relationship between the
result of our theory and that of the theorem of Chung, Lu,
and Vu f31g. In Sec. X, conclusions will be made.

II. DETERMINISTIC SCALE-FREE NETWORK

Let us introduce the DSFN model invented by Barabási,
Ravasz, and Vicsekf28g. The development of this network is
shown in Fig. 1. The black and white nodes show the hub
and rim nodes. We call the most connected hub and rim the
root and leaf, respectively.

In this model the total number of nodes,Nsnd, the total
number of links,Lsnd, and the maximum number of links,
kmaxsnd, are given by

Nsnd = 3n = 0,1,2,3,4, . . . , s1d

Lsnd = 2s3n − 2nd = 0,2,10,38,130, . . . , s2d

kmaxsnd = 2s2n − 1d = 0,2,6,14,30, . . . , s3d

respectively.
Let us consider the average link numbersi.e., the average

degreed kkl of a network. It is defined by

kklsnd ;
1

Nsnd o
i=1

Nsnd

ki . s4d

The meaning of this is just the number of links per nodesi.e.,
the average degreed. We may call it the first-order average
degree. On the other hand, if we use the numberPskd of
nodes withk degree, then we can write the average as

kklsnd =
1

Nsnd o
k=1

kmaxsnd

kPskd. s5d

Therefore, we find that the conversion is carried out by

FIG. 1. sColor onlined The deterministic scale-free network. The
black and white nodes show the hub and rim nodes. We call the
most connected hub and rim the root and leaf, respectively. This
network is a bipartite structure.
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Pskd = o
i=1

Nsnd

dk,ki
. s6d

Now, we are able to calculatekkl for our DSFN. Substituting
Eqs.s1d and s2d into Eq. s4d, we obtain

kklsnd =
2Lsnd
Nsnd

= 4F1 −S2

3
DnG →

n→`

4. s7d

In this way, even though the network becomes very com-
plex asn→`, the average approaches a finite constant 4.
This is due to the following fact: In this DSFN as the itera-
tion is repeated, the order of the most connected hub be-
comes large indefinitely while its number remains very few
fi.e.,<os1dg. On the other hand, the numbers of the very few
connected nodes become large indefinitely. Hence the sum of
the magnitude of orderskd times the numberfPskdg of nodes
with the orderk may remain finite.

III. EXACT NUMBERS OF NODES AND DEGREES

Let us find the exact numbers of nodes and degrees. This
would be very crucial for our later purposes in order to
evaluate many quantities in the network theory.

As was discussed by Barabási, Ravasz, and Vicsekf28g,
in the DSFN there are two categories of nodes called the
“hub” nodes and “rim” nodes. As they called the most con-
nected hub node the “root”sshown as black dots in Fig. 1d,
we would like to call the most connected rim node the “leaf”
sshown as white dots in Fig. 1d. From seeing Fig. 1, the
locations of the root node and the leaf nodes look very simi-
lar to those of a hub and rims in an umbrella. While there
exists only one roof node in each generation of the network,
the number of leaves can increase very rapidly.

Let us first consider the hub nodes. In theith step, the
degree of the root is 2i+1−2. In the next iteration two copies
of this hub will appear in the two newly added units. As we
iterate further, in thenth step 3n−i copies of this hub will be
present in the network. However, the two newly created cop-
ies will not increase their degree after further iterations.
Therefore, aftern iterations there are 233n−i−1 nodes with
degree 2i+1−2.

Let us next consider the rim nodes. In theith step, the
degree of the most connected rim, the leaf, isi. And the
number of such nodes is 2i. In the next iteration one copy of
the leaves will be kept the same and two copies of the leaves
will appear in the two newly added. As we iterate further, in
the nth step 3n−i copies of the leaves will be present in the
network. Therefore, aftern iterations there are 2i 33n−i−1

nodes with degreei.
Now, denote byk the degree of nodes and denote byPskd

the total number of nodes with degreek. Hence we get
Table I.

As was shown by Barabási, Ravasz, and Vicsekf28g, con-
sideration of the root nodes is enough to derive the scaling
exponent of the distribution functionPskd for the root nodes
in the network. Picking up the 233n−1−i nodes with degree
2i+1−2, we can regardPskd as 233n−1−i and k as 2i+1−2.
Then eliminating i, we can derivePskd~k−g, where g

=ln 3/ ln 2=1.584 962. This shows a scale-free naturesi.e.,
the fractal natured of the hub nodes in the network as we
expectf30g.

On the other hand, it is not true for the leaves in the
network. In this case, regardingPskd as 2i 33n−1−i andk asi,

we find Pskd~ s 2
3

dk=e−g8k, whereg8=lns 3
2

d=0.405 465. This
shows that the scaling nature of the leaf nodes is not scale
free but exponential.

In this way, the scaling nature of the roots and that of the
leaves in the DSFN are different from each other. Thus, we
are led to a certain model which consists of amultifractal
nature of the complex networks.

IV. SECOND-ORDER AVERAGE DEGREE

Let us calculate the second-order average degreed̃snd. It
is defined by

d̃snd ;
1

Lsnd o
i=1

Nsnd

ki
2 =

1

Lsnd o
k=1

kmaxsnd

k2Pskd. s8d

This quantity was recently introduced by Chung, Lu, and Vu
f31g. Roughly speaking, the meaning of this quality is the
average degree per link. In other words, it is the average
degree weighted with the preferential attachment such that

d̃snd ; o
i=1

Nsnd

kiPiskid. s9d

We derive

d̃snd = 2
kk2lsnd
kklsnd

, s10d

wherekk2lsnd is defined by

kk2lsnd =
1

Nsnd o
i=1

Nsnd

ki
2 =

1

Nsnd o
k=1

kmaxsnd

k2Pskd, s11d

the second moment per node. As was shown before, the av-
erage degreekklsnd converges to 4 asn→`. Hence, the

second-order average degreed̃snd becomes proportional to

TABLE I. The numberPskd of nodes with degreek for the root
nodes and leaf nodes.

Root nodes Leaf nodes

k Pskd k Pskd
2 233n−2 1 233n−2

6 233n−3 2 2233n−3

14 233n−4 3 2333n−4

] ] ] ]

2i+1−2 233n−1−i i 2i 33n−1−i

] ] ] ]

2n−1−2 233 n−2 2n−233

2n−2 2 n−1 2n−131

2n+1−2 1 n 2n
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the second momentkk2lsnd in the limit such that

d̃ =
kk2lsnd

2
. s12d

Before going to calculate the second-order average de-
gree, let us first check whether or not the distributions given
in the tables reproduce the correct results for the total num-
bers of nodes and links. This problem is a trivial one. How-
ever, as we will see, this is very instructive for our purpose
here in order to see what is going on in the problem.

Let us show that the distributions of the nodes
and degrees are exact. We can sum them up as fol-
lows: okPallPskd=okProotPskd+okPleafPskd=3n−1+233n−1

=3n=Nsnd. This proves Eq.s1d.
Let us next consider the total number of links in the net-

work. We calculate it for the root and leaf nodes, separately,
as okProotkPskd=2s3n−2nd, okPleafkPskd=2s3n−2nd. In this
way, explicitly using the exact numbers of nodes and de-
grees, we can show that each sum produces the total number
of links in the network as we have expected. Hence, this
proves Eq.s2d.

This situation encourages us to perform the calculation of
the second-order average degree of Eq.s8d. Let us do this
next. In Eq.s8d, we need to separate it into two parts of the
sum as follows:

d̃snd =
1

LsndS o
kProot

k2Pskd + o
kPleaf

k2PskdD . s13d

As a result, we can easily calculate the second-order av-
erage degree as follows:

d̃snd =
1

1 −S2

3
DnF3S4

3
Dn

− Sn +
1

2
DS2

3
Dn

−
5

2
G

→
n→`

3S4

3
Dn

→ `. s14d

In this way, the second-order average degreed̃ has been
calculated explicitly, and we have shown that it diverges as
an exponential law.

V. FORMALISM

A. Adjacency matrix

Let us consider the adjacency matrixA in the theory of
networks f1,2,28,29,31g. This matrix is very important for
the theory of networks, since it represents the topology of the
network structure. Denote byaij a component corresponding
to a link between theith node and thej th node. In the theory
of networks, the elements have only 0 or 1 according to
whether or not there is a link. Therefore, in general, the
adjacency matrix is defined by

aij = H1 if there is a link,

0 otherwise.
J s15d

Let us consider the adjacency matrix for the DSFN. De-
note byAn the adjacency matrix for thenth generation of the

network. Using the numbering given in Fig. 1, the adjacency
matrix is defined by

A1 = 10 1 1

1 0 0

1 0 0
2 , s16d

A2 =1
0 1 1 0 1 1 0 1 1

1 0 0

1 0 0

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

1 1 0 0

1 1 0 0

2 , s17d

and so forth. Here all other blanks stand for zeros. We omit
them just for seeing the sparse matrix structure correspond-
ing to the network geometry of the DSFN. What is important
here in the above is that the adjacency matrix for a certain
generation of the network can be almost three-block diagonal
by those for the last generation of the network. From this, the
fractal nature of the adjacency matrices for the DSFN is now
very clear.

B. Eigenequations

Let us next consider the eigenvalue problem for the adja-
cency matrix in the DSFN. The eigenequation for thenth
generation of the network is given by

AnXW n = lXW n, XW n
t ·XW n = 1, s18d

where An is the 3n33n matrix andxWn the 3n-dimensional
vector with its transposexWn

t . This reduces to the following
eigenvalue problem:

detflIn − Ang = 0, s19d

whereIn stands for the 3n33n unit matrix. Denote byDnsld
the determinant on the left-hand side. This can be formally
expanded with respect tol as

Dnsld = l3n
− a1l3n−1 + a2l3n−2 + ¯ + s− 1d3n−1a3n−1l

+ s− 1d3n
a3n. s20d

We note the following: Since thel is an eigenvalue of the
adjacency matrixAn, from knowledge of linear algebra, we
are able to derive the equationDnsAnd=0. As we will see
later, all the terms of even number powers ofl vanish in the
DSFN. This is attributed to the topology of the network.

VI. NUMERICAL CALCULATION OF THE
SPECTRA

Let us obtain the spectra of the adjacency matrices, dis-
cussed in the previous section. We use a computer calcula-
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tion for this purpose. The calculated spectra for the adja-
cency matrix for each generation of the network are shown in
Fig. 2.

From the numerical results, we find the following very
important characters of the spectra:sid The maximum eigen-
valuel1

snd at thenth generation of the network becomes the
second largest eigenvaluel2

sn+1d at thesn+1dth generation of
the network.

sii d Similarly for the other eigenvalues, all the eigenvalues
appearing at the previous generations of network always ex-
ist in the eigenvalues appearing at the new generation of the
network.

siii d The spectrum consists of highly degenerate levels.
For example, forn=1 there are three levelssshown by tri-
anglesd of l=0, ±Î2 with single degeneracy. Forn=2 there
are nine levelssshown by circlesd in the spectrum. There is
only one peak at the center level ofl=0 with degeneracy of
3 and the other levels ofl= ± sÎ3−1d , ±Î2, ±sÎ3+1d are all
single levels. Forn=3 there are 27 levelssshown by squaresd
in the spectrum. There is a highest peak at the center level
sl=0d with degeneracy of 9. There are two peaks at the
levels of l= ±Î2 with degeneracy of 3. And the other 12
levels are all single levels. Forn=4 there are 81 levels
sshown by diamondsd in the spectrum. There is a highest
peak at the center levelsl=0d with degeneracy of 27. There
are two peaks at the levels ofl= ±Î2 with degeneracy of 9.
There are four peaks at the levels ofl= ±Î2 with degen-
eracy of 3. And the other 24 levels are all single levels and so
forth.

In order to study this nature further, we have done nu-
merical calculations for the spectra of the adjacency matrices
with the sizes of 35=243, 36=729, 37=2187, and 38=6561,

respectively. From this we have confirmed ourselves that this
nature is numerically exact at any generation of the network
up to n=8. We show this in Fig. 3 for the cases of 35=243
sn=5d, 66=729 sn=6d, and 37=2187sn=7d.

The above nature is remarkable. It enables us to calculate
the exact sequence of degeneracies in the spectrum at any
generation of the network, apart from finding the exact ei-
genvalues. By counting the numbers of the levels and its
degeneracies, we find the following very important result.

sivd Let us denotem j the degeneracy of thej th peak in the
spectrum for the network of thenth generation. Denote byQj
the number of the eigenvalues having the same degeneracy
of m j. We find

m j = 3j for j = 0,1, . . . ,n − 1, s21d

Qj = H2n−1−j for j = 1,2, . . . ,n − 1,

3 3 2n−1 for j = 0.
J s22d

FIG. 2. sColor onlined The spectrum of adjacency matrix for the
deterministic scale-free network. The spectrum of adjacency matrix
for the network of thenth generation is shown forn=1 strianglesd,
n=2 scirclesd, n=3 ssquaresd, andn=4 sdiamondsd, respectively.

FIG. 3. sColor onlined The spectrum of adjacency matrix for the
deterministic scale-free network. The spectrum of adjacency matrix
for the network of thenth generation is shown forn=5, n=6, and
n=7, respectively.
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From this we can check whether or not the above formula
is correct. For this purpose, we just reproduce the total num-
ber of eigenvalues of the adjacency matrix as follows:

o
j=0

n−1

m jQj = m0Q0 + m1Q1 + ¯ + mn−1Qn−1 = 3n. s23d

This is nothing but the total number of eigenvalues in the
spectrum. Hence, the formula is proved.

Now we would like to point out the particular nature of
the eigenvectorssi.e., the statesd corresponding to the eigen-
values:svd The eigenvectors (i.e., the states) are very local-
ized. The states ofl=0 first appearing in the network of the
first generation are localized only on the pairs of leaf nodes
such as the pair of 2 and 3, the pair of 5 and 6, the pair of 8
and 9, etc. The states ofl= ±Î2 first appearing in the net-
work of the first generation are localized only on the smallest
triples centered at the root hub such as the triple of 1, 2, and
3, the triple of 4, 5, and 6, the triple of 7, 8, and 9, etc. The
states ofl= ± sÎ3±1d first appearing in the network of the
second generation are localized within the subnetworks
having the size of that of the second generation, such
as the network of 1–9, etc. The states ofl
= ±Î2s3±Î3±Î11±6Î3d first appearing in the network of
the third generation are localized within the subnetworks
having the size of that of the second generation, such as the
network of 1–27, etc., and so forth. And the number of such
subnetworks gives its degeneracy.

Thus, we find that the larger the eigenvalue, the larger the
extent of the eigenvector. Hence, we would like to conclude
that the eigenvector with the maximum eigenvaluessay,
lmaxd is most delocalized while the eigenvalues ofl=0 are
extremely localized at the leaf nodes in the network. This
nature explains the meaning of the spectrum shown in Figs. 2
and 3. Therefore, since we see similar spectra in most SFN
models, we may expect that the same holds true for every
SFN. This is a very interesting point in the study of SFN’s.

VII. NATURE OF THE EIGENVALUE PROBLEM

A. Simple observations forDn„l…

We are going to treat analytically the above result in the
previous section. To do this, let us consider some interesting
natures thatDnsld can be factored in terms of the polynomi-
als of fnsld, where fnsld is an even function of the
s2ndth-order polynomial ofl such that fnsld= fns−ld; this
symmetry in the eigenvalues is due to the bipartite nature of
the DSFN. For example, the polynomials are given explicitly
such as

f1syd = y − 2,

f2syd = y2 − 8y + 4,

f3syd = y4 − 24y3 + 104y3 − 96y + 16,

f4syd = y8 − 64y7 + 1104y6 − 742y5 + 22112y4 − 29696y3

+ 17664y2 − 4096y + 256, s24d

and so forth, wherey=l2. In general, this nature can be
summarized as the following conjectures.

Conjecture 1:For the polynomial with even suffix ofn
=2m, it is always factorized as

f2msld = gmsldhmsld, s25d

wheregmsld andhmsld are s2mdth-order polynomials ofl.
Conjecture 2:

Dnsld = l3n−1
hf1sldj3n−2

hf2sldj3n−3
¯ hfn−2sldj3fn−1sldfnsld.

s26d

The meaning of the second conjecture is now very clear.
s1d The spectrum is symmetrical around the center level of
l=0 ssee Figs. 2 and 3d. This means that ifl is an eigen-
value of the adjacency matrix, then so if for −l. s2d The
numbers of power exponents in Eq.s26d represent those of
the degeneracies of the eigenvalues. For example, thel=0
level consists of 3n−1 si.e., the degeneracy of 3n−1d and this
corresponds to the highest peak at the center ofl=0 in the
spectrum. Thel= ±Î2 levels consist of 3n−2 si.e., the degen-
eracy of 3n−2d and these correspond to the second highest
peaks at the center ofl= ±Î2 in the spectrum and so forth.
This proves the formulas of Eqs.s21d and s22d, previously
found.

The validity of the conjectures is also supported by our
numerical calculations as mentioned before. But the exact
proofs have not been made yet, however.

B. Roots of the irreducible polynomials

We now consider zerossi.e., rootsd of the irreducible
polynomials offnsld for k=1,2, . . . ,n. As studied before, the
order of fnsld is 2n and it is a function ofl2. Let us denote
y=l2. Then, fnsld becomes a function ofy such asfnsyd.

Sincefnsyd is now as2ndth-order polynomial ofy, it has to
consist of 2n zeros. Then the meaning of irreducibility is the
following: fnsyd sk=1,2, . . . ,nd does not share common
roots with the other generations of the polynomials. This can
be proved by the Sturm theorem for polynomialsf32g.

From the knowledge of algebra, if there is a series of
irreducible polynomials, then roots of the polynomial of or-
dern−1 always exist in the intervals between the roots of the
polynomial of ordern. Therefore, the maximum root of the
polynomial of ordern exceeds that of ordern−1. In our
problem, the irreducible polynomialfnsld is of order 2n and
it gives the newly appearing eigenvalues. Therefore, there
are 2n eigenvalues in the network of thenth generation.

On the other hand, the previously appearing eigenvalues
are given as the roots of the irreducible polynomials of order
up to n−1—i.e., f1sld , f2sld , . . . ,fn−1sld. Therefore, there
are 1+2+̄ +2n−1=2n−1 eigenvalues already in the spec-
trum. Thus, the number of newly appearing eigenvalues is
exactly one more than that of the previously existing eigen-
values. Hence, by the knowledge of algebra, the eigenvalues
of the network of thenth generation sandwich the previously

K. IGUCHI AND H. YAMADA PHYSICAL REVIEW E 71, 036144s2005d

036144-6



existing eigenvalues such that the maximum eigenvalue may
exceed that of the previous generation. As we iterate the
network,n becomes large indefinitely. Therefore, the maxi-
mum eigenvalue develops further.

To understand the above nature further, we have numeri-
cally investigated the growth of the maximum eigenvalue
lmaxsnd at thenth generation up ton=8. Define the ratio by
Rsnd=lmaxsnd /lmaxsn−1d. The result is as follows:Rs1d
=1.932. . ., Rs2d=1.583. . ., Rs3d=1.486. . ., Rs4d=1.447. . .,
Rs5d=1.430. . .,… . From this we see that asn becomes large
the ratio tends to the numberÎ2=1.4142. . . . Thus, we are
led to the following conjecture.

Conjecture 3:As n→`,

lmax→ 2n/2. s27d

This conjecture can be proved from the nature of the series
of the irreducible polynomials of Eq.s24d. Let us first con-
sider the case ofn=even. As we have discussed conjecture 1,
if n=even, then the polynomial can be factorized asy2n−1

−a1sndy2n−1−1+a2sndy2n−1−2+¯ =fl2n−1
−b1sndl2sn−1d−1+¯ g

fl2n−1
+b1sndl2sn−1d−1+¯ g=0, whereb1snd=2n/2. Therefore,

the maximum eigenvalue is given byl2n−1
−b1sndl2sn−1d−1

−¯ =0. Dividing the above polynomial byl2sn−1d−1 yields
l=b1snd+Os1/ld+¯. Sincelmax→` asn→`, we can ob-
tain the approximation of the maximum eigenvalue by a per-
turbation method. Hence, forn=even, we obtainlmaxsnd
=2n/2+Os2sn−1d/2d+¯, such thatlmaxsnd.2n/2. Similarly, if
n=odd, then we can apply the same perturbational argument
to the irreducible polynomial; then, we havey=a1snd
−Os1/yd+¯, wherea1snd=332n andy=l2. Hence, we ob-
tain

lmaxsnd = Î3 3 2n/2 − OS1

l
D + ¯ , s28d

such thatlmaxsnd,Î332n/2. This argument supports the
conjecture. Thus, we expect that asn→` lmaxsnd→2n/2.

In this way, the solution of the series of the irreducible
polynomials is very crucial in finding the spectrum of the
DSFN. This point has been supported by our numerical cal-
culations before.

VIII. HIDDEN SYMMETRY, ZERO MODES,
AND INDEX THEOREM

A. Hidden symmetry in the model

Let us consider a particular nature of the DSFN. There is
a hidden symmetry in the adjacency matrixAn. To see this
point let us consider the case ofn=2. As was discussed be-
fore, the adjacency matrix in this case is given by Eq.s17d
and the eigenvalue problem is

1
0 1 1 0 1 1 0 1 1

1 0 0

1 0 0

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

1 1 0 0

1 1 0 0

21
x1

x2

x3

x4

x5

x6

x7

x8

x9

2 = l1
x1

x2

x3

x4

x5

x6

x7

x8

x9

2 .

s29d

This expression depends on the choice of the arrangement of

components of the eigenvectorXW 2=sx1,x2,x3,x4,x5,x6,
x7,x8,x9dt, wheret means its transpose. Reminding ourselves
of the bipartite nature of the DSFN, we can rearrange them

as follows: YW 2=sx1,x4,x7,x2,x5,x8,x3,x6,x9dt. This means
that we align the vector-component numbering using mod3.
Therefore, we can write it as

Ã2SuW

vW
D = S0333 M2

†

M2 0636
DSuW

vW
D = lSuW

vW
D , s30d

where uW and vW are the three- and six-dimensional vectors,
0333 and 0636 are zero matrices, and

M2 =1
1 0 0

1 1 0

1 0 1

1 0 0

1 1 0

1 0 1

2 . s31d

Here,Ã2=PA2P
−1 andYW 2=suW ,vWdt=PXW 2, respectively. This is

just an interchange of the vector components. Therefore, if

there is no confusion betweenÃ2 and A2, we can simply

write Ã2 asA2. So we identify them as the original adjacency
matrix A2.

From Eq.s30d, we find, by simple algebra,

M2
†M2uW = l2uW, M2M2

†vW = l2vW , s32d

whereM2
†M2 is the three-dimensional matrix andM2M2

† the
six-dimensional matrix.

Now, we are able to generalize the above procedure to the
adjacency matrixAn for the DSFN at any generation. In this
case Eq.s30d is generalized to

AnSuW

vW
D = S0uu Mn

†

Mn 0vv
DSuW

vW
D = lSuW

vW
D . s33d

This then yields

Mn
†vW = luW, MnuW = lvW . s34d

HereuW andvW are theu- andv-dimensional vectors, 0uu and
0vv the u3u and v3v zero matrices, andMn

† and Mn the
u3v and v3u matrices, respectively, whereu=3n−1 and v
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=3n−3n−1. Therefore, in the same way we have the follow-
ing:

Dnsld = udetfMn
†Mn − l2Ingu1/2udetfMnMn

† − l2Ingu1/2

= fD̃3n−1sydD̃3n−3n−1sydg1/2, s35d

where D̃3n−1syd and D̃3n−3n−1syd f=y3n−1
D̃3n−1sydg are factor-

ized in terms of the irreducible polynomialsfnsld. Therefore,
Eq. s35d can be reduced to the form of Eq.s26d. Thus, this
approach can provide us a hint to prove conjecture 2. How-
ever, a rigorous proof is out of scope of this paper since it is
numerically supported as in Sec. VI.

We would like to mention that similar approaches have
been applied to amorphous systemsf33,34g, the topological
localization problemf35g, fermion number fractionalization
f36g, and the Hubbard modelf37g.

B. Zero modes and index theorem in the deterministic
scale-free network

Let us considerzero modessi.e., the eigenvectors having
l=0d in the spectrum. The zero modes are given by substi-
tuting l=0 into Eq.s34d such that

Mn
†vW = 0, MnuW = 0. s36d

The number of zero modes given byMnuW =0 sor, equiva-
lently, the number of zero modes given by the matrixMn

†Mnd
is the dimension of the null space ofMn. This is sometimes
called the dimension of the kernel ofMn, which is simply
written as dimfkerMng. And the number of zero modes given
by Mn

†vW =0 sor, equivalently, the number of zero modes given
by the matrixMnMn

†d is the dimension of the null space of
Mn

†. This is sometimes called the dimension of the kernel of
Mn

†, simply written as dimfkerMn
†g=dimfcokerMng f38g.

Therefore, in the above example ofn=2, dimfkerM2g=3
and dimfkerM2

†g=0. This would give a relation IndsM2d
; the number of zero modes=dimfkerM2g−dimfkerM2

†g=3.
This quantity IndsMnd is called theindex of Mn. And the
relation where the number of zero modes coincides with the
difference between dimfkerMng and dimfkerMn

†g is called
the index theoremf38g.

This can be generalized to the adjacency matrixAn for the
DSFN in thenth generation. We now have the index theorem
for the DSFN:

IndsMnd = dimfkerMng − dimfkerMn
†g = 3n−1. s37d

As we have discussed before, this number is just the number
of l=0 states, localized at the smallest leaf nodes.

The proof of Eq.s37d is quite simple. For the DSFN, the
dimension of the matrixMn

†Mn is 3n−1, which is the number
of hub nodes. And the dimension of the matrixMnMn

† is 3n

−3n−1, which is the number of rim nodes. Then, we always
find that there are no zero modes inMn

†Mn in our DSFN.
That is, dimfkerMn

†g=0. Therefore, the null space ofMnMn
†

is given by the difference between the dimension of the ma-
trix MnMn

† and that of the matrixMn
†Mn. This is 3n−3n−1

−3n−1=3n−1. Hence, dimfkerMng=3n−1.

IX. NATURE OF THE MAXIMUM EIGENVALUE

Let us consider the nature of the maximum eigenvalue. As
we studied before, the matrixMn

†Mn absolutely determines
the spectrum ofl.0, while the matrixMnMn

† determines the
zero modes ofl=0 as well as the spectrum. Therefore, in
order to determine the spectrum we need study the matrix
Mn

†Mn.
Let us see a few example of these matrices. The matrix

for n=2 is obtained from Eq.s31d. The matrix forn=3 is
given as

M3
†M3 =1

14 2 2 4 2 2 4 2 2

2 2 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0

4 0 0 6 2 2 0 0 0

2 0 0 2 2 0 0 0 0

2 0 0 2 0 2 0 0 0

4 0 0 0 0 0 6 2 2

2 0 0 0 0 0 2 2 0

2 0 0 0 0 0 2 0 2

2 . s38d

Here, we find that the diagonal elements of the matrixM3
†M3

are just the maximum degrees of nodessi.e., the numbers of
the most connected linksd in the networks up to the third
generation. The maximum diagonal element is the maximum
degree of nodes, which is the degree of the root. Hence, it is
14 for n=3 sit is 6 for n=2d.

We find that this is always true for the network of thenth
generation. We find that the diagonal elements of the matrix
Mn

†Mn are just the maximum degrees of nodes for the net-
works up to thenth generation. Hence the maximum diago-
nal element is the maximum degrees of node, which is the
degree of the root. It iskmax=2s2n−1d from Eq. s3d.

Let us first derive the lower bound of the maximum ei-
genvalue,lmax. In mathematics, we have the following theo-
rem f39g.

Theorem 1:Denote byH a non-negative definite matrix.
Denote byvW a positive definite symmetric matrix. Define a
matrix A by A=H+V. Suppose that the eigenequations
Hucil=hiucil andAucil=aiucil si =1,2, . . . ,ld are known such
that the eigenvalues satisfyh1ùh2ù ¯ ùhl and a1ùa2
ù ¯ ùal. And assume thatkciuVucilù0. Then, the follow-
ing holds true:

hs ø as for s= 1,2, . . . ,l . s39d

We omit the proof here, since it is given in the literaturef39g.
Let us apply this theorem to the matrixMn

†Mn. We now
denote the matrixMn

†Mn by A in the theorem. Denote byH
the matrix having the diagonal matrix components ofMn

†Mn
and denote byV the matrix having the off-diagonal matrix
components ofMn

†Mn. Therefore,Mn
†Mn satisfies the condi-

tions forA in the theorem. The eigenvalue of the matrixA is
now ai =li

2 and l =3n−1. Therefore, we can prove the follow-
ing theorem for the DSFN.
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Theorem 2:

hs ø ls
2 for s= 1,2, . . . ,3n−1. s40d

Since the maximum eigenvalue ofH is now kmax, we have
h1=kmax. Thus, we finally end up with the following theorem
for the DSFN.

Theorem 3:

Îkmax= Î2n+1 − 2 ø lmax. s41d

We have also investigated this theorem numerically in
Fig. 4. It shows that the theorem is valid for the DSFN’s of
the generations up ton=8. Thus, this supports the theorem.

Let us next derive the upper bound of the maximum ei-
genvaluelmax. To do so, let us first consider a particular
property of the matrixMn. As is seen from the matrix such as
Eq. s31d, the ith column vector ofMn is a vector whose
components are 0 or 1 such that the total number of 1 in the
column counts the orderki of the ith hub node. Denote this
vector bykW i. Then we findkW i ·kW i =ki, where by definitionk1

.k2ù ¯ ùk3n, since k1 is the order of the rootsi.e., the
most connected hubd. Then, the matrix can be represented as
Mn=skW1,kW4, . . . ,kW3n−2d, where the suffices run over all the
hub si.e., rootd nodes. Now, we can representMn

†Mn in gen-
eral in the following:

Mn
†Mn =1

kW1 ·kW1 kW1 ·kW4 ¯ kW1 ·kW3n−2

kW1 ·kW4 kW4 ·kW4 ¯ kW4 ·kW3n−2

A A � A

kW1 ·kW3n−2 kW2 ·kW3n−2 ¯ kW3n−2 ·kW3n−2

2 ,

s42d

which is a 3n−133n−1 symmetric matrix. Therefore, the trace
of this matrix is the total number of links such that
trsMn

†Mnd=oiProotkW i ·kW i =oiProotki =okProotkPskd=Lsnd.
Let us now apply the Perron-Frobenius theorem to our

problem. The Perron-Frobenius theorem in linear algebra
f31,39g is described as follows.

Theorem 4:Suppose that ann3n symmetric matrixA has
all non-negative entriesaij ù0. Then this satisfies an
eigenequationAucil=aiucil. For any positive constants
c1,c2, . . . ,cn, the maximum eigenvalueamaxsAd satisfies

amaxsAd ø max
1øiøn

Ho
j=1

n
cjaij

ci
J . s43d

We omit the proof here since this is very well knownf31,39g.
RegardingA asMn

†Mn such thataij =kW i ·kW j andai =li
2 and

applying to the Perron-Frobenius theorem, we can prove the
following theorem for the DSFN.

Theorem 5:

lmax
2 sMn

†Mnd ø o
jProot

kW1 ·kW j ; b. s44d

Sinceo jProotkW1·kW j øo jProotkW j ·kW j =Lsnd together with Eq.s2d,
we end up with the following theorem for the DSFN.

Theorem 6:

lmaxsMn
†Mnd ø ÎLsnd = Î2s3n − 2nd. s45d

From theorems 3 and 5, we finally derive the following theo-
rem for the DSFN.

Theorem 7:The maximum eigenvalue of the adjacency
matrix of the DSFN is bounded as

a ø lmaxø b ø c, s46d

wherea=Î2s2n−1d, c=Î2s3n−2nd, andb=o jProotkW1·kW j. Al-
though there is no name on the quantityb, this is a much
better bound thanc, the square root of the total number of
links. We note that the above theorem is consistent with con-
jecture 3 that assertslmax→2n/2 asn→`.

We finally make a comment on the theorem of Chung, Lu,
and Vu f31g. As introduced in Introduction, since the DSFN
has the exponent ofg=ln 3/ ln 2,2.5, this system may be-
long to thesC2d case. Therefore, if we apply their theorem to
our system of the DSFN, then it leads us to the following:

Îkmaxø lmaxø d̃, s47d

where d̃~ s4/3dn=s1.33. . .dn from Eq. s14d. On the other
hand, our theorem provides us the lower bounda~2n/2

=s1.414. . .dn and the upper boundc~3n/2=s1.732. . .dn. From
this, we find that the theorem of Chung, Lu, and Vuf31g
holds true until aboutn=12. However, beyondn=12 the role

FIG. 4. sColor onlined The growth of the maximum eigenvalue
lmax and its lower and upper bounds in the DSFN. Herelmax

scirclesd, the lower strianglesd, and upperssquaresd bounds are
shown for the DSFN’s of thenth generations up ton=8,
respectively.

EXACTLY SOLVABLE SCALE-FREE NETWORK MODEL PHYSICAL REVIEW E71, 036144s2005d

036144-9



betweend̃ and Îkmax is switched. So their theorem can be
violated aboven=12, although, strictly speaking, their theo-
rem should be applied to the case of 2,g,2.5. We show
this behavior using the above exact expressions in Fig. 5. As
shown in Fig. 4, the numerical value oflmax is sandwiched

between the upper bound ofd̃ and the lower bound ofÎkmax.
Therefore, the theorem of Chung, Lu, and Vu follows within
our calculation up ton=8. Unfortunately, a numerical value

of lmax is not available aboven=8 because of the ability of
our computer power. So we cannot say anything about where
it is located aboven=8, so far. We may expect that it is still
sandwiched between them although the role is switched.

In this way, our rigorous approach provides a concrete
example for investigating the validity of the theorem of
Chung, Lu, and Vuf31g. This is an advantage of our theory.

X. CONCLUSIONS

In conclusion, we have intensively studied the DSFN that
was first studied by Barabási, Ravasz, and Vicsekf28g. We
have first studied the geometry of the network and presented
the exact numbers of nodes and degrees. Second, we have
analytically calculated the exact number of the second-order

average degreed̃ fsee Eq.s31dg, using the numbers of the
nodes and degrees. Third, we have numerically calculated
the spectra of the adjacency matrixAn for the network up to
thesn=7dth generation. Fourth, we have discussed the nature
of the adjacency matrix for the network. Fifth, we have
shown that there is a hidden symmetry in the adjacency ma-
trix. Finally, we have investigated the maximum eigenvalue
lmax in the DSFN. We have shown thatlmax is bounded by
the lower and upper bounds that are given analyticallyssee
theorem 7d. Thus, we believe that our theory presented in this
paper gives the first rigorous example in the SFN theory,
where most of all quantities in the network theory are ana-
lytically obtained. In this context, we would like to call the
DSFN the exactly solvable SFN model.
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